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Abstract
Two-dimensional super-paramagnetic suspensions that are confined to a planar
liquid–gas interface and exposed to an inhomogeneous external magnetic field
directed perpendicular to the interface are studied by extensive Monte Carlo
computer simulations. The external field is a superposition of a homogeneous
field and a localized inhomogeneity, modelled by a Gaussian function. The
inhomogeneity causes two combined effects that compete against each other:
it provides an external potential, modifying at the same time the mutual
interparticle repulsion. If the inhomogeneity enhances the strength of the
homogeneous profile, the inhomogeneous field is a ‘magnetic tweezer’ for
low particle densities. At higher densities, on the other hand, there is a
small accumulation in the centre of the inhomogeneous field, which leads to
a depletion zone outside the inhomogeneity due to the mutual interparticle
repulsion. Very large inhomogeneities produce local crystallites surrounded by
a depletion ring. If the inhomogeneity reduces the total field strength, particles
are repelled from the inhomogeneity and voids are generated in the suspension.
Our predictions are of relevance to the direct transport of magnetic particles and
can be verified in real-space experiments of super-paramagnetic suspensions.

1. Introduction

Trapping particles in a controlled way by external electromagnetic fields is the key to
studying properties of strongly confined few-particle systems. For example, Bose–Einstein
condensation was observed in a system of a few atomic ions confined by a quadrupolar trap [1].
Trapping is also very important for colloidal particles as used, for example, by the optical-
tweezer method [2]. Here a laser-optical field is used to grasp single particles, since their
dielectric contrast to the solvent makes it energetically more favourable to stay inside the
focused laser beams where the intensity is maximal [3]. The optical-tweezing method has
been used to study the effective interactions between particles [4], to investigate hydrodynamic
interactions [5, 6], to pattern surfaces by adsorbed colloids [7], and to perform controlled
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pulling experiment of DNA chains that are attached on a polystyrene sphere [8]. While optical
tweezers typically grasp a single colloidal particle, larger traps, like the so-called ‘dielectric
bottle’, have been used to attract a large number of particles optically [9]: a high electric field
between capacitor plates is used to pull colloidal particles out of the solution. This effect allows
controlling of the assembly of colloidal particles by an external drive (i.e., the external field),
a possibility that bears significant relevance, for example, in the construction of microfluidic
devices [10].

In this paper, we report on the two-dimensional magnetic analogue of the optical tweezer
and the dielectric bottle. We study here super-paramagnetic colloidal particles that are
confined by gravity to the two-dimensional air–water interface of a pendant drop [11–14].
Typically, these particles are subjected to a constant external magnetic field which is directed
perpendicular to the air–water interface. The external field then induces a strong magnetic
moment in each of the colloidal particles, which leads to a mutual repulsion between aligned
dipoles. Preceding studies have considered homogeneousfields and also magnetic suspensions
in a gravitational field that does not affect the interparticle interactions [15, 16]. In this work, we
focus on non-homogeneous external magnetic fields which are, for simplicity, always directed
perpendicular to the air–water interface.

In detail, we consider a superposition of a basic homogeneous field and a localized
‘trapping field’. This situation is realized experimentally by superimposing two small coils on
top of each other to the experimental sample (see figure 1). The inhomogeneity causes two
combined and competing effects: it provides an external potential but it also modifies the mutual
interparticle repulsion. We use extensive Monte Carlo computer simulation studies to calculate
the one-particle equilibrium density profiles of the magnetic colloids in the inhomogeneous
field. We find a wealth of different behaviour including a magnetic tweezer, a magnetic trap
which generates small crystallites of the size of the field-inhomogeneity, and void generation.
The behaviour depends crucially on the sign of the magnetic trapping field relative to the
homogeneous field, and on the concentration of the colloids. If the inhomogeneous field points
parallel to the homogeneousone, the inhomogeneousfield acts as a ‘magnetic tweezer’ at small
particle densities. At higher densities, on the other hand, there is a small accumulation in the
centre of the inhomogeneous field which leads to a depletion zone outside the inhomogeneities
due to the mutual interparticle repulsion. Very large inhomogeneities produce local crystallites
surrounded by a depletion ring. If the inhomogeneity points antiparallel to the homogeneous
field, on the other hand, particles are repelled from the inhomogeneity, and voids are generated
in the suspension.

The rest of the paper is organized as follows. In section 2, we define the model Hamiltonian
used, which was derived previously in [17]. The simulation method and results for the density
fields for different inhomogeneities are presented in section 3. We finally conclude in section 4.

2. The model

We consider a two-dimensional system of super-paramagnetic colloidal particles interacting
with each other via the dipole–dipole pair potential, valid for point-like magnetic dipoles,

udd(r, mi , m j ) = 1

2

mi · m j − 3(mi · n)(m j · n)

r3
, (1)

where r = ri −r j is the interparticle separation vector, n = r/r is the unit vector along the line
connecting the centres of the colloids, and mi and m j are the magnetic moments carried by
particles i and j (i �= j ). The factor 1/2 in equation (1) appears due to the paramagnetic nature
of colloids, i.e., it stems from the fact that the dipoles on the particles are not permanent but
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B0

B+(r)

B-(r)

Figure 1. A sketch of an experimental set-up that could be used in order to generate locally
inhomogeneous magnetic fields that are perpendicular to the interface in which the paramagnetic
particles are located. The thin vertical lines denote the homogeneous field B0, whereas the thick
ones denote field lines generated by the upper and lower coils, B+(r) and B−(r), respectively. The
paramagnetic particles are denoted as filled spheres in the middle of the picture.

(This figure is in colour only in the electronic version)

rather induced by the external magnetic field. A detailed derivation of the interaction energy u
of two polarizable particles i and j in an arbitrarily varying external field is presented in [17]
and reads as follows:

u = udd(r, mi , m j ) − 1
2 mi · B0(ri) − 1

2 m j · B0(r j ). (2)

Here udd is defined in equation (1), and the last two terms describe the particle interaction with
the field. If the external field is homogeneous, the latter turn into an irrelevant constant whose
effect can be absorbed into a rescaling of the chemical potential µ of the particles. However,
in case of inhomogeneous magnetic field, which we consider in this paper, the particle–field
interaction term cannot be ignored any more and it has prominent physical consequences, as
we demonstrate in what follows. Finally, we remark that the overall field energy term has been
subtracted in equation (2).

In our problem the colloids are spherical with a finite extent, but, for the sake of simplicity,
we consider their magnetic dipoles as point-like. Their motion is confined on the plane formed
by the water–air interface. This two-dimensional system consisting of N particles is placed
under a spatially inhomogeneous magnetic field B0(r) directed perpendicular to the interface,
which induces in each particle a magnetic moment mi , i = 1, 2, . . . , N . In this paper we
consider super-paramagnetic colloids [13] for which the magnetic moment mi completely
aligns with the external field B0 and the following relation holds:

mi = χB0, (3)

where χ is the magnetic susceptibility of the particles, which, for super-paramagnetic particles,
has a value typically lying in the range 1 µm3 � χ � 10 µm3 [12]1.

Assuming pair additivity of the interactions, the total Hamiltonian H of the two-
dimensional system of super-paramagnetic colloids under a perpendicular magnetic field takes
the form

H =
∑

i

p2
i

2m
+

∑
i< j

χ2

2

B0(ri)B0(r j )

|ri − r j |3 −
∑

i

χ

2
B2

0(ri ), (4)

1 Note that we are using Gaussian units throughout, in which χ has the dimensions of volume.
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where the first term is the total kinetic energy, with the momenta pi and the mass m of the
particles, the second term is the dipole–dipole interaction, and the last term accounts for
the particle–field interaction. The configuration of the system is determined in general by the
competition between repulsive dipole–dipole interaction and attractive dipole–field interaction.
To model the field inhomogeneity we use a Gaussian superimposed to the homogeneous
magnetic field of B0-strength such that the total field is

B0(r) = B0[1 + a0e−(r/l)2
]. (5)

Here a0 and l are the height and the width of the Gaussian, respectively.
A physical realization of a local and perpendicular magnetic field can be experimentally

achieved by applying a set-up such as the one shown in figure 1. One can imagine positioning
two identical coils of the same helicity symmetrically on either side of the confining interface.
On sending electrical currents into both coils, one generates two magnetic fields, B+(r) from
the upper coil and B−(r) from the lower one. If the currents are equal in strength and flow in
the same direction on both coils, then the components of the fields B+(r) and B−(r) that are
tangential to the interface cancel each other and only an additional perpendicular component
remains. Depending on the direction of the current on the coils, this remaining component
can be either parallel to the wide external field B0, causing thereby a local enhancement of
the magnetic field strength, or antiparallel to it, causing a local weakening of the latter. We
also note that if one sends the currents into the coils in opposite directions, then an additional
local field that it purely tangential to the confining interface is obtained. In any case, the total
magnetic field acting on the particles reads as

B0(r) = B0 + B+(r) + B−(r). (6)

The relative strength of the dipolar interaction is characterized by the dimensionless
coupling constant

� = (χ B0)
2

kBT
(πρ0)

3/2, (7)

where kB denotes Boltzmann’s constant, T the absolute temperature, and ρ0 is the density of
the homogeneous system, i.e., the value of the density far away from the localized magnetic
field inhomogeneity. We further define the average interparticle distance a as a = ρ

−1/2
0 .

Changing the parameter � allows tuning of the repulsion between the particles, ranging from
weakly (� � 1) to strongly (� � 1) interacting systems. Thus, a local enhancement of the
field results in a strengthening of the interparticle repulsions. On the other hand, the third term
on the right-hand side of equation (4) causes the particles to be attracted to a magnetic ‘trap’,
in which the total field is locally stronger than its homogeneous value B0 at r → ∞. Two
terms with competing effects are thus present in the Hamiltonian, and the net resulting density
profiles depend on concentration of the colloids, as well as on the sign of the Gaussian bulge,
i.e., on the sign of a0.

3. Results and discussion

In order to study the effect of an inhomogeneous magnetic field in the form of equation (5)
on the behaviour of the colloids, we have performed extensive Monte Carlo simulations in
the grand-canonical (µ, V , T ) ensemble2. The standard grand-canonical sampling technique
was used (see for example [18]), with typical runs consisting of 25 × 106–50 × 106 steps with
50 × 103 steps used for equilibration. The typical size of the simulation box ranged between

2 In our two-dimensional system, the volume V has the meaning of the area A.
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20a and 40a, with the average interparticle distance a (or 10l and 20l, with the trap width l).
We have calculated the equilibrium one-particle density profiles ρ(r) as averages during the
simulation, as well as the coverage parameter C defined as

C = 2π

∫ ∞

0
r [ρ(r) − ρ0] dr. (8)

The coverage C is a reasonable measure of the enhancing or depleting effects of the local
potential, as it expresses the excess number of particles that are drawn into (C > 0) or pushed
away (C < 0) from the system in the presence of the Gaussian bulge.

In what follows, the average interparticle distance a of the uniform system is used as the
length scale. Introducing the dimensionless variables x = r/a and l̄ = l/a, we can recast the
Hamiltonian of the system, equation (4), in the form

βH =
∑

i

βp2
i

2m
+

∑
i< j

�

2π3/2|xi − x j |3 [1 + a0e−(xi /l̄)2
][1 + a0e−(x j /l̄)2

]

−
∑

i

�

2π3/2

(
a3

χ

)
[1 + a0e−(xi /l̄)2

]2, (9)

where β = (kBT )−1. Note that there are four parameters characterizing the system: �, a0, l̄ and
χ , whereas only one, �, remains for the homogeneous case, a0 = 0. The dimensionless ratio
λ = a3/χ in equation (9) is somewhat special because its value cannot be varied arbitrarily if
we change �. Assuming that we keep B0 and the temperature fixed and we control � through
the chemical potential µ, then since � ∝ a−3, it follows that the parameters λ1,2 corresponding
to two different values �1,2 are physically related to each other through

λ2 = λ1
�1

�2
. (10)

We have thus fixed in our simulations the value of λ for one particular choice of �: λ = 15.1 for
� = 7.4, a realistic value if we take χ ∼= 8 µm3 and a typical interparticle distance a ∼= 5 µm.
Since we simulated in the grand canonical ensemble, in all subsequent simulations at different
�-values equation (10) was satisfied automatically. By varying the parameters a0, l̄ and � we
have investigated the effects of the strength and range of the inhomogeneity as well as those
of coupling in the resulting profiles.

First we consider very low densities, in which case the particles can be approximated as
being noninteracting and the second term on the right-hand side of equation (4) can be ignored.
The inhomogeneous density profile ρ(r) is then trivially obtained as

ρ(r) = eµ/kB T eχ B2
0 (r)/(2kBT )/�2, (11)

with the thermal de Broglie wavelength � =
√

2π h̄2/(mkBT ) and Planck’s constant h̄. In
this case, the particles are simply attracted to the trap (a0 > 0), and since the total magnetic
field strength B0(r) appears in the exponent of equation (11), the coverage is clearly positive.
For strong trapping at low densities, a single particle is caught by the inhomogeneity, which
results in the magnetic tweezer effect. Under the assumption of weak trapping, a0 � 1, on
the other hand, an analytic expression for the coverage can be obtained that reads as

C ∼= �

2
√

π
a0λl̄2 = χ B2

0

2kBT
πa0l̄2. (12)

Hence, in the case of weak interactions, the coverage resulting from a trap scales linearly with
the trap’s strength a0 and quadratically with its width l̄.

Next we consider the case of moderate couplings and we set � = 7.4, a coupling for which
the system is fluid in the homogeneous case; indeed, the bulk freezing transition of a system of
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Figure 2. Simulation snapshot for parameters � = 7.4, a0 = 10 and l̄ = 2. The colloidal particles
are rendered as circles.
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0

Figure 3. Inhomogeneous density profile (solid curve) for the parameters corresponding to figure 2.
The asymptotic behaviour of the profile is denoted by the dotted curve, which represents the function
ρ(r)/ρ0 = −13.5/(r/a)3 + 1.

particles interacting via a repulsive potential βv(x) = �/(2x3) in two dimensions takes place
at �c = 135.5 [19]. In figure 2 we show a simulation snapshot for a trap with strength a0 = 10
and width l̄ = 2. It can be seen that the strong magnetic field in the middle attracts particles
locally, which form a crystalline ordering. The latter is also witnessed by the sharp peaks in the
inhomogeneous density ρ(r) shown in figure 3. The highly concentrated region in the middle
of the trap, which is also strongly localized because of the rather narrow width of the latter,
creates a strong repulsion to the rest of the system that results into a local ‘depletion zone’ of
magnetic colloids around the trap. This region can be discerned as an ‘empty ring’ in figure 2
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Figure 4. The averaged local coupling constant �(r) for the parameters corresponding to figure 2.
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Figure 5. Simulation snapshot for parameters � = 7.4, a0 = 10 and l̄ = 4.

and also as a depression of the density profile in figure 3 in the region 3 � r/a � 4. Although
there is an accumulation of particles in the middle of the trap, the depletion ring causes an
overall negative coverage, C = −9.3 in this case. According to general arguments put forward
by de Gennes [20], the inhomogeneity of the system in the middle acts as an external potential
to the rest of it, and thus causes an asymptotic behaviour of the density profile of the form

ρ(r) − ρ0 ∼ 1/r3, r → ∞. (13)

The dotted curve in figure 3 is precisely a fit of the form (13) above, ρ(r)/ρ0 − 1 =
−13.5/(r/a)3.

The crystalline order in the centre of the trap is due to the high value of the magnetic field
there which translates itself into a correspondingly high local value of the coupling constant
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Figure 6. The density profile for the parameters corresponding to figure 5.
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Figure 7. The averaged local coupling constant �(r) for the parameters corresponding to figure 5.

�. In order to define this quantity in a physically meaningful way, we first construct a locally
averaged weighted density ρ̄(r) as follows [21]:

ρ̄(r) = 1

πσ 2

∫
	(σ − |r − r′|)ρ(r ′) d2r ′, (14)

where 	(z) is the Heaviside step-function and σ is a length scale that limits the region within
which the local averaging is carried out. There is some arbitrariness in the choice of σ ; however,
this quantity should be neither smaller than a, so that the local interactions can be taken into
account, nor much larger than it, since in that case the local character of the coupling would be
lost. We therefore choose σ = 2a and define with the help of ρ̄(r) the local coupling constant
�(r), in analogy to equation (7), as

�(r) = (χ B0(r))2

kBT
(πρ(r))3/2 . (15)
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Figure 8. Simulation snapshot for the parameter combination � = 5.7, a0 = −1.5 and l̄ = 1.9.
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Figure 9. The density profile for the parameters corresponding to figure 8.

The local coupling constant is plotted in figure 4. The domain of crystallinity, r/a � 2.5,
coincides with the region in which �(r) exceeds the critical freezing value, �c = 135.5,
mentioned above.

The effect of increasing the width of the trap is shown in figure 5, pertaining to � = 7.4
and a0 = 10, as before, but now l̄ = 4. Once again, a crystalline domain appears in the
trap region, whose domain is extended in comparison to the case of the narrow trap examined
before. As a result of the smoother decay of the inhomogeneous field towards its asymptotic
value, the interface between the crystalline and the fluid phase is less sharp. In particular, the
local depletion region visible in figure 2 is absent in this case, since the local lattice constant
is changing smoothly from its value in the crystal phase to the corresponding one in the fluid
phase. As seen in figure 6, the depletion zone is now longer-range but much shallower than
before. The net effect on the coverage C turns out to be positive in this case, and the number
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Figure 10. Inhomogeneous density profiles for the parameter combination � = 7.4, l̄ = 2 and
several different values a0 < 0, as indicated in the legend. The corresponding coverages are given
in the text.

C = 12.1 is obtained. Thus, for the case a0 > 0, the coverage coefficient C has a non-
monotonic dependence on the trap parameters and can change sign, depending on the width
of the inhomogeneous external field. In the latter case there is particle trapping. The local
coupling constant �(r) is shown in figure 7; once more, the region of crystallinity roughly
coincides with the region �(r) > �c.

There are two extreme cases of inhomogeneous profiles. One is a δ-function peak, where
a single particle is trapped in the middle, repelling all the other particles. In this case the
depletion zone is very deep, and coverage C is negative. The opposite of a δ-peak is a very
slowly varying inhomogeneous profile with l̄ � 1. Then the depletion zone is very shallow
and the coverage is positive. Therefore, changing the width of the Gaussian trap allows direct
control of the coverage C .

We now turn our attention to the opposite case, a0 < 0, in which the superimposed
inhomogeneous field points in a direction opposite to B0. In this way, a local depression of
the total magnetic field is created at the centre, and the field–particle interaction increases.
A void in the local density results, as can be seen in figure 8, which pertains to parameters
� = 5.7, a0 = −1.5 and l̄ = 1.9. The corresponding density profile is shown in figure 9, and
the resulting coverage is in this case negative, C = −12.2. The density peak in the centre of
the inhomogeneous field is due to the fact that |a0| > 1. Thus, the amplitude B0(r) of the total
magnetic field displays a local maximum at the origin and, due to the third term in equation (4),
there is a local particle accumulation there.

Tuning the strength of the external potential allows now for controlling externally the
extent of the region that is depleted of colloidal particles. This is demonstrated in figure 10,
in which density profiles for fixed values � = 7.4, l̄ = 2 and varying a0 < 0 are shown.
The corresponding coverages C are −6.0 for a0 = −1.0, −5.4 for a0 = −0.8, and −1.8 for
a0 = −0.5. Note that for the cases a0 = −0.5 and a0 = −0.8, for which |a0| < 1, there is no
local maximum at the origin, as the amplitude B0(r) of the total field has a global minimum
there.

Of particular interest is the case in which a0 < −1 and at the same time the width of
the trap extends over a broad region, l̄ � 1. In this case, one obtains in the centre a local
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field that points in a direction opposite to that of the field far away from the inhomogeneity.
Correspondingly, the paramagnetic particles in the middle have opposite polarization than those
far from it, hence they attract each other. One could create in this way a bulk-like crystalline
region in the middle of the sample that attracts particles in the fluid-like region away from
it, and a nontrivial interface is expected. We notice, however, that particles belonging to the
two different regions still repel each other, since the sign of the magnetization of the colloidal
particles flips as soon as the borderline B0(r) = 0 is crossed. We will return to this problem
in the future.

4. Conclusions

In conclusion, we have investigated how an inhomogeneous localized magnetic field acts on
a suspension of magnetic particles in a uniform field. We have confirmed a magnetic tweezer
effect for small densities, due to the attractive self-energy of an induced dipole in an external
field. For higher densities many colloidal particle will be attracted by the trap, and this in turn
induces a repulsive interparticle energy which competes against the attractive field–particle-
energy, resulting in a depletion ring of particles around the trap. For larger colloidal densities
close to freezing, the inhomogeneity will induce crystallites which are roughly extended across
the inhomogeneity. The sign of the net coverage depends delicately on the range l of the
inhomogeneity relative to the interparticle spacing. For a different sign of the inhomogeneous
field relative to that of the homogeneous one, void formation (or ‘hole burning’) was observed.
If the trapping field reverses the sign of the total field, particles are trapped again in the centre
of the void.

Our effects can be verified in experiments using the typical set-up of two-dimensional
magnetic colloids [11–14]. They can be exploited to control particle trapping or particle
exclusion via the external field and should have an impact on possible applications of how to
guide magnetic particle via fields, which is typically encountered for ferrofluids [22].

It would be interesting for future studies to predict our simulated density profiles by
classical density functional theory of inhomogeneous fluids. Density functional theory can be
straightforwardly applied to two spatial dimensions (for a recent work, see for example [23]),
but a reliable approximation for soft interactions is still under debate.

Further future studies should focus on the inhomogeneous field caused by a single solenoid,
which will necessarily have an in-plane component [24]. It is easier to realize this situation
experimentally [25] since typically the microscope is placed on top of the sample. The in-
plane component of the magnetic field will lead to a mutual attraction between the particle
and can trigger chain formation around the inhomogeneity. All the set-ups studied in this
paper are radially symmetric external fields. Another interesting inhomogeneity is a wedge-
like field. Here one could speculate about true thermodynamic phase transitions such as a
localization–delocalization transition as a function of the external field strength.
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